12 research outputs found

    PASBio: predicate-argument structures for event extraction in molecular biology

    Get PDF
    Background: The exploitation of information extraction (IE), a technology aiming to provide instances of structured representations from free-form text, has been rapidly growing within the molecular biology (MB) research community to keep track of the latest results reported in literature. IE systems have traditionally used shallow syntactic patterns for matching facts in sentences but such approaches appear inadequate to achieve high accuracy in MB event extraction due to complex sentence structure. A consensus in the IE community is emerging on the necessity for exploiting deeper knowledge structures such as through the relations between a verb and its arguments shown by predicate-argument structure (PAS). PAS is of interest as structures typically correspond to events of interest and their participating entities. For this to be realized within IE a key knowledge component is the definition of PAS frames. PAS frames for non-technical domains such as newswire are already being constructed in several projects such as PropBank, VerbNet, and FrameNet. Knowledge from PAS should enable more accurate applications in several areas where sentence understanding is required like machine translation and text summarization. In this article, we explore the need to adapt PAS for the MB domain and specify PAS frames to support IE, as well as outlining the major issues that require consideration in their construction. Results: We introduce PASBio by extending a model based on PropBank to the MB domain. The hypothesis we explore is that PAS holds the key for understanding relationships describing the roles of genes and gene products in mediating their biological functions. We chose predicates describing gene expression, molecular interactions and signal transduction events with the aim of covering a number of research areas in MB. Analysis was performed on sentences containing a set of verbal predicates from MEDLINE and full text journals. Results confirm the necessity to analyze PAS specifically for MB domain. Conclusions: At present PASBio contains the analyzed PAS of over 30 verbs, publicly available on the Internet for use in advanced applications. In the future we aim to expand the knowledge base to cover more verbs and the nominal form of each predicate

    A critical review of PASBio's argument structures for biomedical verbs

    Get PDF
    BACKGROUND: Propositional representations of biomedical knowledge are a critical component of most aspects of semantic mining in biomedicine. However, the proper set of propositions has yet to be determined. Recently, the PASBio project proposed a set of propositions and argument structures for biomedical verbs. This initial set of representations presents an opportunity for evaluating the suitability of predicate-argument structures as a scheme for representing verbal semantics in the biomedical domain. Here, we quantitatively evaluate several dimensions of the initial PASBio propositional structure repository. RESULTS: We propose a number of metrics and heuristics related to arity, role labelling, argument realization, and corpus coverage for evaluating large-scale predicate-argument structure proposals. We evaluate the metrics and heuristics by applying them to PASBio 1.0. CONCLUSION: PASBio demonstrates the suitability of predicate-argument structures for representing aspects of the semantics of biomedical verbs. Metrics related to theta-criterion violations and to the distribution of arguments are able to detect flaws in semantic representations, given a set of predicate-argument structures and a relatively small corpus annotated with them

    Constructing a semantic predication gold standard from the biomedical literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Semantic relations increasingly underpin biomedical text mining and knowledge discovery applications. The success of such practical applications crucially depends on the quality of extracted relations, which can be assessed against a gold standard reference. Most such references in biomedical text mining focus on narrow subdomains and adopt different semantic representations, rendering them difficult to use for benchmarking independently developed relation extraction systems. In this article, we present a multi-phase gold standard annotation study, in which we annotated 500 sentences randomly selected from MEDLINE abstracts on a wide range of biomedical topics with 1371 semantic predications. The UMLS Metathesaurus served as the main source for conceptual information and the UMLS Semantic Network for relational information. We measured interannotator agreement and analyzed the annotations closely to identify some of the challenges in annotating biomedical text with relations based on an ontology or a terminology.</p> <p>Results</p> <p>We obtain fair to moderate interannotator agreement in the practice phase (0.378-0.475). With improved guidelines and additional semantic equivalence criteria, the agreement increases by 12% (0.415 to 0.536) in the main annotation phase. In addition, we find that agreement increases to 0.688 when the agreement calculation is limited to those predications that are based only on the explicitly provided UMLS concepts and relations.</p> <p>Conclusions</p> <p>While interannotator agreement in the practice phase confirms that conceptual annotation is a challenging task, the increasing agreement in the main annotation phase points out that an acceptable level of agreement can be achieved in multiple iterations, by setting stricter guidelines and establishing semantic equivalence criteria. Mapping text to ontological concepts emerges as the main challenge in conceptual annotation. Annotating predications involving biomolecular entities and processes is particularly challenging. While the resulting gold standard is mainly intended to serve as a test collection for our semantic interpreter, we believe that the lessons learned are applicable generally.</p

    Semi-automatic conversion of BioProp semantic annotation to PASBio annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Semantic role labeling (SRL) is an important text analysis technique. In SRL, sentences are represented by one or more predicate-argument structures (PAS). Each PAS is composed of a predicate (verb) and several arguments (noun phrases, adverbial phrases, etc.) with different semantic roles, including main arguments (agent or patient) as well as adjunct arguments (time, manner, or location). PropBank is the most widely used PAS corpus and annotation format in the newswire domain. In the biomedical field, however, more detailed and restrictive PAS annotation formats such as PASBio are popular. Unfortunately, due to the lack of an annotated PASBio corpus, no publicly available machine-learning (ML) based SRL systems based on PASBio have been developed. In previous work, we constructed a biomedical corpus based on the PropBank standard called BioProp, on which we developed an ML-based SRL system, BIOSMILE. In this paper, we aim to build a system to convert BIOSMILE's BioProp annotation output to PASBio annotation. Our system consists of BIOSMILE in combination with a BioProp-PASBio rule-based converter, and an additional semi-automatic rule generator.</p> <p>Results</p> <p>Our first experiment evaluated our rule-based converter's performance independently from BIOSMILE performance. The converter achieved an F-score of 85.29%. The second experiment evaluated combined system (BIOSMILE + rule-based converter). The system achieved an F-score of 69.08% for PASBio's 29 verbs.</p> <p>Conclusion</p> <p>Our approach allows PAS conversion between BioProp and PASBio annotation using BIOSMILE alongside our newly developed semi-automatic rule generator and rule-based converter. Our system can match the performance of other state-of-the-art domain-specific ML-based SRL systems and can be easily customized for PASBio application development.</p

    BioInfer: a corpus for information extraction in the biomedical domain

    Get PDF
    BACKGROUND: Lately, there has been a great interest in the application of information extraction methods to the biomedical domain, in particular, to the extraction of relationships of genes, proteins, and RNA from scientific publications. The development and evaluation of such methods requires annotated domain corpora. RESULTS: We present BioInfer (Bio Information Extraction Resource), a new public resource providing an annotated corpus of biomedical English. We describe an annotation scheme capturing named entities and their relationships along with a dependency analysis of sentence syntax. We further present ontologies defining the types of entities and relationships annotated in the corpus. Currently, the corpus contains 1100 sentences from abstracts of biomedical research articles annotated for relationships, named entities, as well as syntactic dependencies. Supporting software is provided with the corpus. The corpus is unique in the domain in combining these annotation types for a single set of sentences, and in the level of detail of the relationship annotation. CONCLUSION: We introduce a corpus targeted at protein, gene, and RNA relationships which serves as a resource for the development of information extraction systems and their components such as parsers and domain analyzers. The corpus will be maintained and further developed with a current version being available at

    Corpus annotation for mining biomedical events from literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced Text Mining (TM) such as semantic enrichment of papers, event or relation extraction, and intelligent Question Answering have increasingly attracted attention in the bio-medical domain. For such attempts to succeed, text annotation from the biological point of view is indispensable. However, due to the complexity of the task, semantic annotation has never been tried on a large scale, apart from relatively simple term annotation.</p> <p>Results</p> <p>We have completed a new type of semantic annotation, event annotation, which is an addition to the existing annotations in the GENIA corpus. The corpus has already been annotated with POS (Parts of Speech), syntactic trees, terms, etc. The new annotation was made on half of the GENIA corpus, consisting of 1,000 Medline abstracts. It contains 9,372 sentences in which 36,114 events are identified. The major challenges during event annotation were (1) to design a scheme of annotation which meets specific requirements of text annotation, (2) to achieve biology-oriented annotation which reflect biologists' interpretation of text, and (3) to ensure the homogeneity of annotation quality across annotators. To meet these challenges, we introduced new concepts such as Single-facet Annotation and Semantic Typing, which have collectively contributed to successful completion of a large scale annotation.</p> <p>Conclusion</p> <p>The resulting event-annotated corpus is the largest and one of the best in quality among similar annotation efforts. We expect it to become a valuable resource for NLP (Natural Language Processing)-based TM in the bio-medical domain.</p

    OpenDMAP: An open source, ontology-driven concept analysis engine, with applications to capturing knowledge regarding protein transport, protein interactions and cell-type-specific gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information extraction (IE) efforts are widely acknowledged to be important in harnessing the rapid advance of biomedical knowledge, particularly in areas where important factual information is published in a diverse literature. Here we report on the design, implementation and several evaluations of OpenDMAP, an ontology-driven, integrated concept analysis system. It significantly advances the state of the art in information extraction by leveraging knowledge in ontological resources, integrating diverse text processing applications, and using an expanded pattern language that allows the mixing of syntactic and semantic elements and variable ordering.</p> <p>Results</p> <p>OpenDMAP information extraction systems were produced for extracting protein transport assertions (transport), protein-protein interaction assertions (interaction) and assertions that a gene is expressed in a cell type (expression). Evaluations were performed on each system, resulting in F-scores ranging from .26 – .72 (precision .39 – .85, recall .16 – .85). Additionally, each of these systems was run over all abstracts in MEDLINE, producing a total of 72,460 transport instances, 265,795 interaction instances and 176,153 expression instances. </p> <p>Conclusion</p> <p>OpenDMAP advances the performance standards for extracting protein-protein interaction predications from the full texts of biomedical research articles. Furthermore, this level of performance appears to generalize to other information extraction tasks, including extracting information about predicates of more than two arguments. The output of the information extraction system is always constructed from elements of an ontology, ensuring that the knowledge representation is grounded with respect to a carefully constructed model of reality. The results of these efforts can be used to increase the efficiency of manual curation efforts and to provide additional features in systems that integrate multiple sources for information extraction. The open source OpenDMAP code library is freely available at <url>http://bionlp.sourceforge.net/</url></p

    Nominalization and Alternations in Biomedical Language

    Get PDF
    Background: This paper presents data on alternations in the argument structure of common domain-specific verbs and their associated verbal nominalizations in the PennBioIE corpus. Alternation is the term in theoretical linguistics for variations in the surface syntactic form of verbs, e.g. the different forms of stimulate in FSH stimulates follicular development and follicular development is stimulated by FSH. The data is used to assess the implications of alternations for biomedical text mining systems and to test the fit of the sublanguage model to biomedical texts. Methodology/Principal Findings: We examined 1,872 tokens of the ten most common domain-specific verbs or their zerorelated nouns in the PennBioIE corpus and labelled them for the presence or absence of three alternations. We then annotated the arguments of 746 tokens of the nominalizations related to these verbs and counted alternations related to the presence or absence of arguments and to the syntactic position of non-absent arguments. We found that alternations are quite common both for verbs and for nominalizations. We also found a previously undescribed alternation involving an adjectival present participle. Conclusions/Significance: We found that even in this semantically restricted domain, alternations are quite common, and alternations involving nominalizations are exceptionally diverse. Nonetheless, the sublanguage model applies to biomedica

    Exploring Predicate-Argument Relations for Named Entity Recognition in the Molecular Biology Domain

    No full text
    Abstract. In this paper, the semantic relationships between a predicate and its arguments in terms of semantic roles are employed to improve lexical-based named entity recognition (NER) in the molecular biology domain. The seman-tic roles were realized in various sets of syntactic features used by a machine learning model to explore what should be the efficient way in allowing this knowledge to provide the highest positive effect on the NER. The empirical re-sults show that the best feature set consists of predicate’s surface form, predi-cate’s lemma, voice, and the united feature of subject-object head’s lemma and transitive-intransitive sense. The performance improvement from using these features indicates the advantage of the predicate-argument semantic knowledge on NER. There are still rooms to enhance NER by using this semantic knowl-edge (e.g. to employ other semantic roles besides agent and theme and to ex-tend the rules for efficient identification of an argument’s boundary).
    corecore